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A New Free Surface Model for the Dip Coating Process
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A new iterative finite element solution methodology for free surface
flow problems is presented. The approach is based on an explicit
projection of the free surface conditions onto a moving boundary,
which is iteratively updated using a combination of an adaptive nodal
displacement scheme, a B-spline smoothing, and a remeshing of the
ftow domain. The methodology is tested successfully on the dip coating
prohlem. & 1993 Arpdnmic Pross, Ing,

INTRODUCTION

The computation of viscous fluid flows with free surface is
an important research topic with many applications in
material shaping processes (extrusion die swell, mould
filling) and coating operations. The dynamics of the free
surface is governed by the combination of viscocapillary
effects and gravity which makes the simulation particularly
awkward, especially in the context of non-Newtonian fluids.
At sicady state, the equilibrium of the free surface is
governed by Lhree conditions, namely; the equaliity of nor-
mal tractions, tangential tractions across the free boundary,
and a mass balance across the interface. As the location of
the free surface is often unknown, it must be determined
simultaneously with the velocity and pressure ficlds. From a
mathematical standpoint, the computation of the free
boundary introduces a non-linearity in the equations of
change which then must be solved iteratively. Therefore the
problem becomes an initial value problem whose
convergence depends on the quality of the initial puess as
well as the performance of the resolution method.

Finite clement simulation of [ree surface problems has
generated a lot ol interest for almost 20 years. The first
significant contribution used an iterative scheme based on
successive substitution [ 14]]. From an initial free boundary
shape, the method simulated the flow field using only the
first two [ree surface conditions. The third condition was
used to generate a new freg surface shape and the procedure

* Author lor correspondence.

0021-9991/9% $5.00

Copyright © 1993 by Academic Press, Inc.
Al rights of reproduction in any form reserved.

was repeated until convergence. An alternate combination
was proposed by Orr and Scriven [15], where the free
surface was updated with the normal stress equilibrium
condition.

The algorithm proposed by Tanner et «f. [24] which uses
the kinematic condition for the update of the free surface
position scems to be the most tractable with the finite
clement method, because the velocity components are
obtained directly at the free boundary nodes. However, as
pointed out by Silliman and Scriven [19], this choice is
suitabic only when the viscous effects dominate over the sur-
face tension effects; otherwise the normal stress equilibrium
should be preferred. From a practical point of view, the use
of the kinematic condition exhibits some drawbacks. The
number of iterations to reach convergence can be quite large
and depends strongly on the quality of the initial guess.
Moreover, when a stagnation point appears on the free
boundary, the kinematic condition does not provide an
efficient way of updating the free surface in the stagnancy
region.

Several nodal displacement schemes for free surface flows
are available in the literature, but our experience shows that
there is not a unique answer for afl problems and that the
efficiency of a given algorithm depends on many charac-
teristics such as the shape of the free surface, the existence of
stagnation points and/or contact lines, and the quality of
the initial guess.

One of the most interesting schemes published so [ar
was proposed by Saito and Scriven [ 18]. They introduced
a new degree of freedom on each free surface node which
represents  Lhe  position of this node. They resolved
simullancously the flow equations and the free surface
equation, using a Newlon’s iteration process. The major
advantage of this formulation is that the velocity field and
the free surface displacement are computed implicitly, and .
the free surlace does not have to be manipulated. Since the
preblem is an initial value one, care must be taken in the
selection of an appropriate initial guess since the guality of
the guess directly influences the convergence properties.
Several options to find a successful start-up approximation
are available such as experimental evidence, rough physical
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modelling, or the resolution of an asymptotic approxima-
tion of the problem [12].

The purpose of this work is to develop a new formulation
for free surface problems which alleviates the difficulty of
searching for a good initial free surface guess. The proposed
method can be seen as an extension of the original work of
Saito and Scriven. It is based on a prediction/projection
fixed-point iterative scheme, where the projection step of the
free boundary conditions -is performed explicitly. A
combination of an original nodal displacement scheme, in
combination with B-spline smoothing and remeshing, is
used for the updating of the free surface. We illustrate the
proposed method with the well-known cylindrical dip
coating problem.

DIP COATING PROBLEM

We consider the case when a cylindrical substrate
is withdrawn vertically at steady state from a fluid-filled
reservoir (Fig. 1). This operation known as dip coating is of
interest in several manufacturing processes, in particular the
food industry. This problem has been the object of several
experimental and numerical investigations [21-23, 107,
which provide a wealth of data for comparison purposes.
In the present study, we will restrict our attention to
Newtonian fluids and we wil] use the set of operating condi-

_tions and experimental data published in [217). The range of
flow conditions corresponds to a situation where the surface
tension has a moderate to mild influence on the free surface.
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FIG. 1. Dip coating process.
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FIG. 2. Boundary condition of the dip coating problem.

The boundary conditions of the problem under
consideration are given in Fig. 2. They consist of Dirichlet
(velocity) conditions on known boundaries, and mixed
Dirichlet-Neumann (velocity-stress) conditions on the free
surface S,. At steady state, the position of the meniscus is
governed by:

— the equality of normal stresses across the free
boundary;

— the absence of friction (the viscosity of air is assumed
to be negligible);

— a no-flow condition across the interface (kinematic
condition) which arises from the fact that the free surface is
a streamline.
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FIG. 3. Boundary conditions at the upper part of the meniscus.
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For the outgoing flow and following Tanguy eral
(21,221, a velocity profile is computed assuming a pure
shear flow (Fig. 3), which yields

Vou=pg((r* = RO/2— H, og r/Ro)2u+ Vo, (1)

where R, is the radius of the web and H_ is the coating
thickness far from the meniscus. The inlet flow in the
reservoir is adjusted to ensure mass conservation.

GOVYERNING EQUATIONS

The partial differential equations governing the conser-
vation of mass and momentum at steady state in the dip
coating problem are the classical Navier-Stokes equations:

pv-grad v —div n = f, {2)
dive =0, {3)
T=—-pd—r1, (4}

where v is the velocity vector, p is the pressure, p is the fluid
density, and fis an external force density. The deviatoric
tensor 1 is expressed by

(%)
(6)

= —2uj,

7=3[Vo+(Vo)'],

where p is the fluid viscosity.

Considering the curvature of the free boundary, it is
convenient to parametrize the boundary by the curvilinear
parameter s and introduce a local frame of reference (n, ¢),
where # is the outward oriented normal and ¢ is the tangen-
tial vector. In this frame of reference, the stress boundary
conditions and the kinematic condition are written

~p+1,=—Po+o(l/R, —1/Ry}= —py+of (7)
T, =0 (8)
v-n=_0, 9)

where t,, and 7, are respectively the normal and tangential
stress components, P, is the atmospheric pressure, g is the
surface tension, R; and R, are the first and second principal
radii of curvature of the free surface §,, and finally § is the
mean curvature of §,.

Due to the axisymmetric pature of the dip coating
problem that we are tackling, the following equivalent
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definition of § (cf. Keunings [11], for instance} can be
conveniently adopted for the algebraic manipulations:

fin= —(d1/8s + n/R,), (10)

where R, is usually written as

1/R, = (dz{ds)/rJ, {11)
where J = ((dr/ds)? + (dz/ds)*)"".

The set of boundary conditions (7), (8), and (9) are
satisfied only when the boundary S, is at equilibrium. In
order to compute the eventual position of this interface, we
propose to devise an algorithm which projects those three
conditions on a “moving” free surface, whose location is
subsequently updated with the kinematic condition. Before
formulating the projection, it is first necessary to explain the
maotion procedure.

Let us define e = (e, e.) as the unit vector of the displace-
ment of the free surface. This vector can be chosen as the
normal to the surface [257, the direction of the velocity
across the free surface [ 7], or it can be oriented along spines
[13]. In the present work, we base the displacement proce-
dure on a combination of those vectors (introduced in a
later section) so that each free surface node M is moved to
a new position M according to the scheme,

OM =OM, + he (12)

which yields for each coordinate:

y=yo+he, (13)

I=2zy+he.. (14)
The subscript “0” denotes the current free boundary and the
variable h represents the length of displacement. This
variable wiil be discretized as a special degree of freedom in
the finite element formulation in the spirit of Saito and
Scriven [ 18]. One can remark that the displacement is not
purely Lagrangian in the normal direction.

We now introduce the definitions of the normal and
tangent vectors of the local frame of reference on the free
boundary. We first define the operator grad.=J ~' 3/3s as
representing the differential variation along the parametric
curve 5. On this curve, the normal and tangent vectors are
then written as

(15)
(16)

By substituting Eqgs. {13) and (14) in the above definitions,
it can be easily shown that

n=(grad.z) y—(grad, y)z
t=(grad, y} y+{grad. z}z.
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n=ng—hgrad_e* —grad (k) e*

(17)

t=1ty+ hgrad. e+ grad (#) e, (18)

where e+ = (—e¢,, ¢,) is the vector orthogonal to the vector
e and the vectors n, and 1, are the norma) and tangential
vectors of the current free boundary, respectively.

If we project the free surface conditions (7)-(9) on the
moving free surface (Fig. 4), a straightforward substitution
of Egs. (10), (17), and (18) in their expressions yield

(_P+Tnn)n= "(POJ‘-G/RZ)(HO—hgradC ei
—grad (k) ety — of grad (1, + h grad, e

+ grad (k) ) (19)
T,.1=0 (20)
v-ng—hv-grad, e —grad (h) v-et =0. 21

Without an @ priori knowledge of the free surface loca-
tion, it is clear that the initial free surface guess may be very
far from the actual position. In order to make the search
procedure converging, it is often required to underrelax the
kinematic condition (21) [1], at least during the first
iterations. In order to do so, we suggest using the relation
{(22), instead of imposing directly v-n=0,
v-aflnl={1—a)v-n,

with & in the range (0, 17].  (22)

Remark 1. To overcome this problem, a new Lagrangian
formulation has been published recently [8] based on the
use of the characteristics streamline diffusion method {9].

{~p+Tan) = -{Pg-w—}g;] bng-h grade’-grad.(h) et)
-6 ] grad {to+h grad e+grad (hy e)

Moving Free Surface

tu=0

v-ng-h v-grade!-grad () v-et = 0

Free Surface

FIG. 4. Projection of the boundary conditions in the moving free surface.
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After combining Egs. (21) and (22), the final form of
kinematic condition {used as the updating equation of the

free surface) reads
e -Hp— hv -grad, et —grad (W) v-et =0, (23)

where e = (1 — (1 —a) |n|).

FINITE ELEMENT FORMULATION

The equations governing the problem, i.e., Egs. (2}-(5),
(19), (20), and (23) are solved by a Galerkin finite element
method. The weak variational form of these equations is

a(v, y) = b, p)+c(v, ) = (f1, ¥) + (f2, )

Ve [HNT, (24)
blv, ®)=0  VdeLX(Q), (25)
where
ale, g) = pi(o) 304 42 (26)
b, )= | ldivv)de 27)
2
c(u,q;):j ¢v grad v 2, (28)
2
(f)=] wfinds (29)
(o ¥)=] dhatds (30)
=Pt (31)
Jo=Ta (32)

The discretisation of the wvelocity and the pressure is
performed with the Crouzeix—Raviart triangular element
{enriched quadratic velocity, discontinuous linear pressure)
which presents ali the necessary conditions of numerical
stability and convergence [3].

On the free boundary, the flux terms (31) and (32), after
substitution in Eqs. (19) and (20) and integration by parts,
become '

Fy(h) = Lw(—Po—o/Rz)(no—h grad, e*

—grad (M) et)ds+o '[ arfos
r

X (to+h grad, e + grad (h) e) ds

—o(ft.— i)
Fy(h)=0,

(33)
(34)
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where the subscripts “¢” and “b” represent the end-nodes of
the free boundary.

In a similar fashion, we can write the weak form of the
updating equation (23) as

j Yev - ny— ho - grad, et —grad (B v-e*)ds =0,  (35)
r

An approximation basis must be introduced for A In our
case, we use a standard quadratic Lagrange polynomial,
namely,

h=Y c,h, (36)
J

where the parameters ¢; are the coefficients of the
approximation basis. Therefore, it is possible to write
Eq. (35) as

Z sz;(cjv -grad (e*)+ grad (c;,) v -e* ds
J

=f Glev - ng) ds. (37)

As for the resolution, we use the classical Uzawa algo-
rithm [6] which allows us to imposec as exactly as desired,
the incompressibility constraint, The Uzawa algorithm is
adapted to symmetric problems. To use it in the context of
the Navier-Stokes equations, the nonlinear term is placed

in the right-hand side of the equation and iterated upon. It.

will converge easily for low velocity, high viscosity problems
{creeping flows), which is the range of problems that we are
dealing with,

The proposed algorithm reads as follows (1/e, is the
penalty parameter):

(1) A" o", and p" known (start with v°=0 and p°®=0),
compute ¢”*' by solving

¢ div(grad) 0"+’ + l/e, - gradidiv 0"+ )
=pf —grad p"+v" . grad v" + F (#").

(2) Update p" "' using p"*'=p"+ /e, - dive"* ',
(3) Update 4" %! by solving Problem 37.

FREE SURFACE UPDATING PROCEDURE

The free surface updating is based on an adaptive nodal
displacement procedure, combined with a smoothing of the
free boundary and remeshing of the flow domain. For
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the displacement scheme, ie., the selection of the unit
displacement vector e and e*, we suggest using

e=cn+ ¢uf[v| (38}

et =c t+ vt/ (39)
where the coefficients ¢; and ¢, are adaptive control
parameters. Depending on the value of these coefficients, it
is possible to emphasize a displacement in the normal direc-
tion or in the velocity direction. In the former case, the free
boundary motion is governed by a pressure force, whereas
in the latter one, the motion is driven by a dynamic force.

In order to detect the actual the influence of the
parameters, Egs. (23), (38), and (39) can be combined,
which yields

{e+he JJR Y v -ny— he,v -grad {v"/16))

—grad. (h)c v -t,=0. {40)
‘We then integrate this equation for the two limiting cases:
¢;=1,c,=0and ¢, =0, ¢, =1, which gives:

Limiting case ¢, =1 and ¢, =0,

hxhy+ev, /ol +h /IR, ¢) (41)

Limiting case ¢;=0and ¢, =1,

h=z¢o, |o|/{{v-grad, vt), (42)
where /2, i1s the (known) value of h at s =5, v, and v, are the
normal and tangential components of the velocity, and v
the vector orthogonal to .

Remark 2. When 1/R, =0, Eq. (41) is nothing but the
equation of a streamline, and the schemes becomes formally
equivalent to the one introduced by Zienkiewics and
Godbole [257.

Remark 3. Equation (42) enables us to dampen the
large variations of 4 that sometimes occur when the tangen-
tial component of the velocity is very small.

From a practical standpoint, the use of Eq. (12) node by
node allows to define a new series of nodes M, representing
the updated free surface. The direct use of these points for
the next iteration is, however, not recommended due to the
non-uniformity of the free surface shape which can make the
iterative process diverging. Rather, we suggest smoothing
the new boundary using a B-spline representation [17] of
the free surface curve for which each point M, exerts a local
influence. We recall here that a B-spline curve is defined as
a series of segments, each of which being represented by X
points M., where K is the order of the curve. Since one
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FIG. 5. Free surface updating process.

important property of B-spline curves is that for a cubic
B-spline curve, the curvature is continuous, we use K =4 in
the present work. This is a property of a streamline, and
consequently that of a free boundary.

We show in Fig. 5 the principle of the free surface
updating process. The resulting boundary is defined
parametrically, which enables us to keep the control on
the location of each node and then to ensure that all the
elements have roughly the same size. Once the new free
boundary is created, the next step is to remesh the whole
domain. As we do not use quadrilateral elements, there is no
special rule of element orthogonality to satisfy like that in
Christoedoulou and Scriven [27]. We rather use the low cost,

. unstructured mesh generator described in Dannelongue and
Tanguy {47. This mesh generator, based on a segment tree
data structure (multi-dimensional binary tree), allows us to
build elements in a domain and interpolate between meshes
at a cost which varies linearly with the number of elements.
It also enables us to optimally control the mean size of the
elements, an important feature in the context of meniscus
flows. This generator was proven to be very superior to

Vo

T

Element

/ fFree Surface

FIG. 6. Notation for the proximijty parameter,
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more conventional algorithms in the context of adaptive
flow problems [5]. Let us finally remark that the use of
triangular elements also provides maximum flexibility to
mesh topology with a large aspect ratio, as in the dip
coating problem.

The free surface algorithm, which comprises the flow
computation, the free surface updating, and the B-spline
smoothing/remeshing process, is applied iteratively until
convergence. To assess the convergence, we introduce a
dimensionless parameter called the proximity parameter,
namely,

P=V,[V,, (43}
where V,, a characteristic velocity of the free surface, is
defined as

Vo= {ZpaVul - 1)Ll - 7). {44)

In these relations, V, is the withdrawal velocity, v, is
the normal component of the average velocity on a free
boundary element edge, / is the length of the element edge,
and r is the average radius between the edge and the web
{Fig. 6). This definition of the proximity parameter is well
adapted to the dip coating problem and it can be seen as the
degree of departure between the current solution and the
final solution. The free boundary is considered as converged

when the proximity parameter P is smaller than a
prescribed tolerance.

APPLICATION

One important feature of this paper is that the proposed
free surface algorithm does not require a good initial start-
up approximation to converge. In the problem considered,
the initial free surface was defined by four horizontal control
points and four vertical ones (Fig. 7), which were positicned
so that the resulting curve lay inside the final domain. The
mesh used at the first iteration (Fig. 7) included 751
clements and 1638 nodes.

The parameters used in the simulation are

RO = 0, 19 min

Vo=2,41cm/s

u=29Pa-s

g =910 kg/m*

a = 0,0359 N/m.

We show in Fig. 8 the position of the free boundary at the
first iteration. It can be seen that this solution is far from the
equilibrium because the velocity vectors at the interface

have a large magnitude and are almost perpendicular to
the boundary. During the subsequent iterations, it was
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FIG. 8. Flow results {velocity vectors) after the first iteration.
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obscrved that the free surface behavior was varying,
depending on the location on the meniscus. In the horizon-
tal part of the meniscus, the magnitude of velocities is small,
and the surface shape becomes rapidly stable. On the other
hand, in the upper part of the meniscus, the velocities tend
to remain paralle] to the meniscus and the eventual coating
thickness is obtained much more slowly, This can be partly
explained by the dependence of the free boundary motion
with respect to the ratio v, /v,, 1e., the angie of the velocity
vector with the tangent to the surface. During the first
iterations, this angle is more pronounced in the horizontat
part of the meniscus. Moreover, the height of the reservoir
level is not critical for the coating thickness, which means
that on the overall, the geometrical constraints are not that
important in this region, hence a faster convergence. The
final result is shown in Fig. 9, where the location of the
stagnation point can be easily noticed.

Remark 4. It should be recailed that a value for the
under-relaxation parameter in the updating equation (23)
must be selected for practical computations. There is no
technique available so far to find an optimal value for a.
Numerical tests showed that « == 0.5 is a suitable choice for
the first few iterations; this value can be progressively
increased while the procedure converges.

A senies of simulations were carried out to assess the role
of the control parameters ¢, and ¢, on the convergence

=~/

FIG. 9. Streamline pattern and meniscus shape for ¥V = 2,41 emy/s.
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behaviour. Results are presented in Figs. 10a and b in terms
of the eventual coating thickness and the proximity
parameter £ (Eq. (38}) versus the number of iterations. For
¢, =05 and ¢, =1,5, nodal displacement is emphasized in
the velocity direction. [t can be noted that we obtain a very
good ‘accuracy (P <5x107?), but that the error on the
coating thickness is still around 1 % after 40 iterations {the
“reference” measured value is 1.54 mm). The number of
iterations to reach the convergence may appear large, but it
is related to the “poor” quality of the initial guess used as the
start-up approximation. A better guess would have drasti-
cally reduced this number. For ¢, =1,5 and ¢,=0,5, the
nodal displacement in the normal direction is enhanced.
The accuracy on P is not as good as in the previous case
(Px7,5x107%) but the correct value of H_, is obtained

a) Test ¢,=0,5 ¢,=1,5
3.0

N r 1,56
Experimental coating thickness _ 1
a8 1 [ 15 =
g 154 £
B 2,0 |' g
= i [Ls 8
2 2
RE
Tl
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: i 50 3
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F1G. 10. Convergence history of the free surface: {(a) ¢,=0,5 and
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FIG. 12. Streamline pattern and meniscus shape for Fy, =747 em/s.
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J

FIG. 13. Streamline pattern and meniscus shape for Fy= 12 cm/s.

after 25 iterations. These two results show that the first
scheme is accurate but the second one is fast. In order to
combine the advantages of the two schemes, it is required to
modify the values of the control parameters during the itera-
tion procedure. We show in Fig. 11 a possible strategy. In
the present state of the method, there is no method to select
the values and an heuristic approach must be used, based on
the convergence trends of the free surface.

We show in Figs. 12 and 13 two additional results
obtained with larger withdrawal velocities, V= 7.47 cm/s
and V,=12cm/s, respectively. The streamline patterns
show clearly that the eventual meniscus is at equilibrium for
the two cases. In terms of coating thickness, a very good
agreement 1s also obtained between the numerical predic-
tions and the experimental data. The reader is referred to
Réglat [16] for a more detailed description of these tests.

CONCLUDING REMARKS

We have shown in this work it is possible to compute with
very good accuracy the location of the free surface in the dip
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coating process, starting with an initial guess that is far from
the eventual solution. This was made possibly by using a
new formulation for the free surface updating procedure
based on an iterative projection of the three boundary
conditions governing the equilibrium of the free boundary

onto a virtual boundary; a B-spline smoothing of the

updated interface combined with a remeshing of the flow
domain with a low-cost mesh generator was performed at
each iteration to aveoid oscillations. The method will be
tested on new free surface problems to assess the robustness
properties as well as to devise a way to choose the control
parameters, especially in the case where the surface tension
effects strongly influence the equilibrium of the free surface.
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